4.3 Three-Dimensional Infinite Square Well

Let us consider a particle of mass m constrained to move in a rectangular box,

- The origin O is at one corner of the box.
- the lengths of the box along $x-, y$ - and z-axes are a, b and c, respectively.
- Inside the box, the potential energy is zero, and outside it is infinite.

The time-independent Schrödinger equation inside the box is

$$
\begin{align*}
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x, y, z)=E \psi(x, y, z) \\
& \text { or } \quad \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{2 m E}{\hbar^{2}} \psi=0 \tag{4.25}
\end{align*}
$$

which is to be solved subject to the condition that $\psi(x, y, z)=0$ at the walls of the box.

This partial differential equation can be solved by the technique of separation of variables. We assume that the function $\psi(x, y, z)$ can be written as a product of three functions each of which depends on only one of the coordinates:

$$
\begin{equation*}
\psi(x, y, z)=X(x) Y(y) Z(z) \tag{4.26}
\end{equation*}
$$

Substituting into Equation (4.25) and dividing by $X Y Z$, we get

$$
\begin{equation*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}+\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}+\frac{2 m E}{\hbar^{2}}=0 \tag{4.27}
\end{equation*}
$$

Note that each term of this equation is a function of only one of the independent variables x, y, z, and the last term is a constant. Therefore, this equation can be valid only if each term is a constant. We write

$$
\begin{align*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =-k_{x}^{2} \tag{4.28}\\
\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =-k_{y}^{2} \tag{4.29}\\
\frac{1}{Z} \frac{d^{2} Z}{d z^{2}} & =-k_{z}^{2} \tag{4.30}
\end{align*}
$$

Where k_{x}, k_{y}, k_{z} are constants. Equation (4.27) reduces to,

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\frac{2 m E}{\hbar^{2}} \tag{4.31}
\end{equation*}
$$

Each of the three Equations (4.28), (4.29), and (4.30) depends on only one of the variables and, therefore, can be solved easily.

Equation (4.28) can be rewritten as,

$$
\begin{equation*}
\frac{d^{2} X}{d x^{2}}+k_{x}^{2} X=0 \tag{4.32}
\end{equation*}
$$

The general solution of this equation is

$$
X(x)=A \sin k_{x} x+B \cos k_{x} x
$$

The boundary condition $X(0)=0$ makes $B=0$. The boundary condition $X(a)=0$ gives

$$
\begin{gather*}
k_{x} a=n_{x} \pi \\
k_{x}=\frac{n_{x} \pi}{a}, \quad n_{x}=1,2,3 \ldots \tag{4.33}
\end{gather*}
$$

Thus the normalized solution to (4.32) is,

$$
\begin{equation*}
X(x)=\sqrt{\frac{2}{a}} \sin \frac{n_{x} \pi x}{a}, \quad n_{x}=1,2,3 \ldots \tag{4.34}
\end{equation*}
$$

Similarly, for $Y(y)$ and $Z(z)$ we have,

$$
\begin{align*}
k_{y} & =\frac{n_{y} \pi}{b}, \quad n_{y}=1,2,3, \ldots \tag{4.35}\\
Y(y) & =\sqrt{\frac{2}{b}} \sin \frac{n_{y} \pi y}{b}, \quad n_{y}=1,2,3, \ldots \tag{4.36}
\end{align*}
$$

$$
\begin{align*}
k_{z} & =\frac{n_{z} \pi}{c}, \quad n_{z}=1,2,3, \ldots \tag{4.37}\\
Z(z) & =\sqrt{\frac{2}{c}} \sin \frac{n_{z} \pi z}{c}, \quad n_{z}=1,2,3, \ldots \tag{4.38}
\end{align*}
$$

Combining (4.34), (4.36) and (4.38), we obtain the normalized eigenfunctions:

$$
\begin{equation*}
\psi_{n_{x}, n_{y}, n_{z}}(x, y, z)=\left(\frac{8}{a b c}\right)^{1 / 2} \sin \frac{n_{x} \pi x}{a} \sin \frac{n_{y} \pi y}{b} \sin \frac{n_{z} \pi z}{c} \tag{4.39}
\end{equation*}
$$

Where $n_{x}, n_{y}, n_{z}=1,2,3 \ldots$
Now, substituting (4.33), (4.35), and (4.37) into (4.31) and rearranging, we get the expression for the energy E as

$$
\begin{equation*}
E_{n_{x}, n_{y}, n_{z}}=\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{n_{x}^{2}}{a^{2}}+\frac{n_{y}^{2}}{b^{2}}+\frac{n_{z}^{2}}{c^{2}}\right) \tag{4.40}
\end{equation*}
$$

Note that three quantum numbers are necessary to describe each quantum state. This is a general property of all three-dimensional systems.

For the ground state $n_{x}=n_{y}=n_{z}=1$. However, the set of quantum numbers which defines the first and the higher states depends on the relative magnitudes of a, b, and c.

Let us consider the simplest case of a cubical box. Then $a=b=c$ and the energy eigenvalues become,

$$
\begin{equation*}
E_{n_{x}, n_{y}, n_{z}}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \tag{4.41}
\end{equation*}
$$

The corresponding eigenfunctions are,

$$
\begin{equation*}
\psi_{n_{x}, n_{y}, n_{z}}(x, y, z)=\left(\frac{8}{a^{3}}\right)^{1 / 2} \sin \left(\frac{n_{x} \pi x}{a}\right) \sin \left(\frac{n_{y} \pi y}{a}\right) \sin \left(\frac{n_{z} \pi z}{a}\right) \tag{4.42}
\end{equation*}
$$

Taking $n_{x}=n_{y}=n_{z}=1$, the ground state energy is

$$
\begin{equation*}
E_{1,1,1}=\frac{3 \pi^{2} \hbar^{2}}{2 m a^{2}} \tag{4.43}
\end{equation*}
$$

This state is nondegenerate.
The next higher energy:

n_{x}	n_{y}	n_{z}	E												
1	1	1	$3 E_{0}$	2	1	1	$6 E_{0}$	2	1	2	$9 E_{0}$	3	1	1	$11 E_{0}$
2	2	2	$12 E_{0}$	1	2	1	$6 E_{0}$	1	2	2	$9 E_{0}$	1	3	1	$11 E_{0}$
				1	1	2	$6 E_{0}$	2	2	1	$9 E_{0}$	1	1	3	$11 E_{0}$

This shows that :

- most of the higher states are degenerate.
- The degeneracy occurs because the energy depends on the quantum numbers n_{x}, n_{y} and n_{z} only through the combination $n^{2}=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$,
- the same value of n can be obtained for different sets of values of n_{x}, n_{y} and n_{z}.

Problem: In the problem of cubical potential box with rigid walls, $n_{x}^{2}+n_{y}^{2}+$ $n_{z}^{2}=14$, Write down:

1- Schrödinger equation for the particle inside the box.
2- The possible values of: a- n_{x}, n_{y}, n_{z}. b- $E_{n_{x}, n_{y}, n_{y}}, \quad$ c- $\psi_{n_{x}, n_{y}, n_{y}}$ d-degree of degeneracy.

