4.3 Three-Dimensional Infinite Square Well

Let us consider a particle of mass *m* constrained to move in a rectangular box,

- The origin *O* is at one corner of the box.
- the lengths of the box along *x* –, *y* and *z axes* are *a*, *b* and *c*, respectively.
- Inside the box, the potential energy is zero, and outside it is infinite.

The time-independent Schrödinger equation inside the box is

$$-\frac{\hbar^2}{2m}\nabla^2\psi(x, y, z) = E\psi(x, y, z)$$

or
$$\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2} + \frac{2mE}{\hbar^2}\psi = 0$$
 ...(4.25)

which is to be solved subject to the condition that $\psi(x, y, z) = 0$ at the walls of the box.

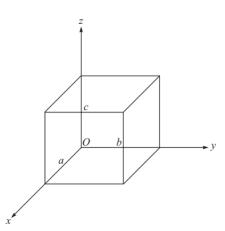
This partial differential equation can be solved by the technique of separation of variables. We assume that the function $\psi(x, y, z)$ can be written as a product of three functions each of which depends on only one of the coordinates:

$$\psi(x, y, z) = X(x)Y(y)Z(z) \qquad \dots (4.26)$$

Substituting into Equation (4.25) and dividing by XYZ, we get

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} + \frac{2mE}{\hbar^2} = 0 \qquad \dots (4.27)$$

Note that each term of this equation is a function of only one of the independent variables x, y, z, and the last term is a constant. Therefore, this equation can be valid only if each term is a constant. We write



$$\frac{1}{X}\frac{d^2X}{dx^2} = -k_x^2 \qquad \dots (4.28)$$

$$\frac{1}{Y}\frac{d^2Y}{dy^2} = -k_y^2 \qquad \dots (4.29)$$

$$\frac{1}{Z}\frac{d^2Z}{dz^2} = -k_z^2 \qquad \dots (4.30)$$

Where k_x , k_y , k_z are constants. Equation (4.27) reduces to,

$$k_x^2 + k_y^2 + k_z^2 = \frac{2mE}{\hbar^2} \qquad \dots (4.31)$$

Each of the three Equations (4.28), (4.29), and (4.30) depends on only one of the variables and, therefore, can be solved easily.

Equation (4.28) can be rewritten as,

$$\frac{d^2X}{dx^2} + k_x^2 X = 0 \qquad \dots (4.32)$$

The general solution of this equation is

$$X(x) = A \sin k_x x + B \cos k_x x$$

The boundary condition X(0) = 0 makes B = 0. The boundary condition X(a) = 0 gives

$$k_x a = n_x \pi$$

 $k_x = \frac{n_x \pi}{a}, \qquad n_x = 1, 2, 3...$...(4.33)

Thus the normalized solution to (4.32) is,

$$X(x) = \sqrt{\frac{2}{a}} \sin \frac{n_x \pi x}{a}, \qquad n_x = 1, 2, 3... \qquad \dots (4.34)$$

Similarly, for Y(y) and Z(z) we have,

$$k_y = \frac{n_y \pi}{b}, \qquad n_y = 1, 2, 3, \dots$$
 ...(4.35)

$$Y(y) = \sqrt{\frac{2}{b}} \sin \frac{n_y \pi y}{b}, \qquad n_y = 1, 2, 3, \dots \qquad \dots (4.36)$$

$$k_z = \frac{n_z \pi}{c}, \qquad n_z = 1, 2, 3, \dots$$
 ...(4.37)

$$Z(z) = \sqrt{\frac{2}{c}} \sin \frac{n_z \pi z}{c}, \quad n_z = 1, 2, 3, \dots \qquad \dots (4.38)$$

Combining (4.34), (4.36) and (4.38), we obtain the **normalized eigenfunctions**:

$$\psi_{n_x,n_y,n_z}(x,y,z) = \left(\frac{8}{abc}\right)^{1/2} \sin\frac{n_x\pi x}{a} \sin\frac{n_y\pi y}{b} \sin\frac{n_z\pi z}{c} \qquad \dots (4.39)$$

Where $n_x, n_y, n_z = 1,2,3 ...$

Now, substituting (4.33), (4.35), and (4.37) into (4.31) and rearranging, we get the expression for the energy E as

$$E_{n_x,n_y,n_z} = \frac{\pi^2 \hbar^2}{2m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right) \qquad \dots (4.40)$$

Note that three quantum numbers are necessary to describe each quantum state. This is a general property of all three-dimensional systems.

For the ground state $n_x = n_y = n_z = 1$. However, the set of quantum numbers which defines the first and the higher states depends on the relative magnitudes of *a*, *b*, and *c*.

Let us consider the simplest case of a cubical box. Then a = b = c and the energy eigenvalues become,

$$E_{n_x,n_y,n_z} = \frac{\pi^2 \hbar^2}{2ma^2} \left(n_x^2 + n_y^2 + n_z^2 \right) \qquad \dots (4.41)$$

The corresponding **eigenfunctions** are,

$$\psi_{n_x,n_y,n_z}(x,y,z) = \left(\frac{8}{a^3}\right)^{1/2} \sin\left(\frac{n_x\pi x}{a}\right) \sin\left(\frac{n_y\pi y}{a}\right) \sin\left(\frac{n_z\pi z}{a}\right) \qquad \dots (4.42)$$

Taking $n_x = n_y = n_z = 1$, the ground state energy is

$$E_{1,1,1} = \frac{3\pi^2 \hbar^2}{2ma^2} \qquad \dots (4.43)$$

This state is nondegenerate.

The next higher energy:

n_x	n _y	n _z	Ε	n_x	n_y	n _z	Ε	n_x	n_y	n _z	Ε	n_x	n_y	n _z	Ε
1	1	1	3 <i>E</i> ₀	2	1	1	6 <i>E</i> ₀	2	1	2	9 <i>E</i> ₀	3	1	1	11 <i>E</i> ₀
2	2	2	$12E_{0}$	1	2	1	6 <i>E</i> ₀	1	2	2	9 <i>E</i> ₀	1	3	1	$11E_{0}$
				1	1	2	6 <i>E</i> ₀	2	2	1	9 <i>E</i> ₀	1	1	3	11 <i>E</i> ₀

This shows that :

- most of the higher states are degenerate.
- The degeneracy occurs because the energy depends on the quantum numbers n_x , n_y and n_z only through the combination $n^2 = n_x^2 + n_y^2 + n_z^2$,
- the same value of *n* can be obtained for different sets of values of n_x , n_y and n_z .

Problem: In the problem of cubical potential box with rigid walls, $n_x^2 + n_y^2 + n_z^2 = 14$, Write down:

1- Schrödinger equation for the particle inside the box.

2- The possible values of: a- n_x , n_y , n_z . b- E_{n_x,n_y,n_y} , c- ψ_{n_x,n_y,n_y} d-degree of degeneracy.